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Introduction

Goal: At design stage, incorporate changes in variable
process inputs and uncertain parameters

Two types of unknown information:

What is not known well (uncertainty, here and now)...

* Models and their parameters (kinetic and transport
coefficients,etc.)

* Unmeasured and unobservable disturbances (ambient
conditions)

What is well known but is subject to change (variability,
wait and see)...

* Feed flow rates

* Process conditions and inputs

* Product demands

* Changes are measured (perfectly) and control
variables are used to compensate for them



Design Under Uncertainty

min E,[P(d, z,y, ) s.th(d, z,y, 6) =0]
S.t.
Pr[g(d,z,y,0)<0,d eD,zeZ,yeY,0c0P] 2«

. state variables (x, T, p, etc)
. design variables (equipment sizes, etc)
. control/operating variables (actuators, flows, etc)
. variable inputs and uncertain parameters
(no dynamics, single stage)
h : process model equations
g : (some) process model inequalities
E[P] : expected value of an objective function
Pr[g]: probability = a for chance constraints

DO N O




Monte Carlo Models

min E,[P(d, z,y, 6) s.th(d, z,y, 6) =0]
st. Prylg(d,z,y,0)=0,deD,yeY,z6Z,00]20a
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Optimizer using discrete sampling over ©
e.g., Hammersley points




Multiperiod Models

min E,[P(d, z,y, ) s.th(z, vy, X, 6) =0]
st. Prylg(d,z,y,0)=0,deD,yeY,z¢6Z,00]20a
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Optimizer using discrete periods over ©
e.g., Hammersley points




M. Multiperiod Models for Uncertainty

min E,[P(d, z,y, 6) s.th(d, z,y, 6) =0]
st. Prylg(d,z,y,0)=0,deD,zeZ,yeY,0c0]20a

After discretization:
Min f,(d) + Z w f (d,zy,,0)
J

st.h;(d,zy,,6,) =0
¢(d,y,2)<0

Derivation of chance constraint requires implicit
guadrature formula that covers all periods, j.

What are the advantages of Multiperiod over Monte Carlo?



Multiperiod Models for Uncertainty:

Addition of Hard Constraints

min E,[P(d, z,y, ) s.th(d,zy,6)=0,9(d, z vy, 08) =0]
st. Prylg(d,z,y,0)=0,deD,zeZ,yeY,0c0]20c

After discretization:

J

st.h;(d,zy,,6,)=0
¢(d,y,2)<0

Hard constraints allow no violation over 6 € © .
Note relation to robust optimization (A. Nemirovski, Y. Zhang)

Some References: Bandoni, Romagnoli and coworkers (1993-1997), Narraway,
Perkins and Barton (1991), Srinivasan, Bonvin, Visser and Palanki (2002),
Walsh and Perkins (1994, 1996)



Confidence Intervals for Uncertainty

x Uncertain model parameters often assumed to
lie between lower and upper bounds and vary
independently of each other

0ecO = {Q‘QImu <0< QU-P}
x [ hese bounds are available from confidence intervals
O={0l0=0+0t,_a, ,}

:  Standard deviation of each parameter
t . Student's t distribution

a : Confidence level
p : Number of uncertain parameters 6

n : Number of data points



Ellipsoidal Confidence Regions for Uncertainty

Replace hypercube with elliptical confidence regions:

O = {9‘(9 . é)TVé_l(Q — é) < pF(l—a-,p,n—p]}

Vo : Covariance matrix
F': Value of the F distribution

« p-dimensional ellipsoidal region

« Attempts to cover all joint parameter combinations
+ Quadratic (convex) constraint in 6

« Approximate for nonlinear systems

Question: How to describe confidence regions for
nonlinear problems?



Nonlinear Confidence Regions
for Uncertainty

Replace ellipse with confidence regions from the

Likelihood Ratio Test: S
O ={6|2[L(6") — L(9)] < x> i_a} 11 ______ /;;L*“dﬁ“ __________ _____________
g% : Maximum likelihood estimates a

L : Log-likelihood function | | : : : |
n . Bartlett correction factor accounts for e N R

finite experimental data size
v?> : Chi-squared statistic

y = 601(1 — exp(Oat))

+ Contours of L(f#) map out the confidence region
x Response functions and the data help form the
confidence regions



Process Example (here and now)

+ Problem: Minimize the cost (V,F) to produce desired
product

« Denbigh's reaction takes place with uncertainty in
each rate constant

4 L_\l) B i F e prod
ks | ky |
D E

L e

Reactor-Separator Flowsheet



x Optimize an estimated average profit over each
confidence region
x 2400 points sampled from each confidence region

............ 2_]:00

max s 41005 Pi(d,u,z,,0;)
i=1

s.t. h..(d,.'.u.-, z;,0;) = ()
g(d,u,x;,0;) < 0
6, cOF: ¢=1.....2400

+* How does profit change with confidence level, a
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Addressing Variabllity (wait and see)

* Process parameters (temperatures, pressures, etc.)
with known changes during plant operation
* Changes are measured (perfectly) and control
variables are used to compensate for them (recourse)
* Control variables are used to improve the results in
the design problems, can be adjusted as soon as variability
IS known
* Parameters, 6, € ©,, account for process variability,
not uncertainty
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Multiperiod Models for Variability

min E,[P(d, z,y, ) s.th(d,z 1y, 6)=0,9(d, z, Yy, 8) =0]
st. Prylg(d,z,y,0)=0,deD,zeZ,yeY,0c0]20c

After discretization:
Min f,(d) + ij f (d,z,y;,6,)
J

st.h,(d,z;,y,,6,)=0
9,(d,z;,y;,6,)<0
¢(d,y,2)<0

Control variables offer more freedom to deal with variability
(e.q., reject disturbances)

Some References: Grossmann and coworkers (1983-1991), lerapetritou,
Acevedo and Pistikopoulos (1996), Pistikopoulos and coworkers (1995-2001)



M. Incorporating both uncertainty and variability

Control variables:

* Allowed to compensate for varying process
parameters 6, (e.g., measured disturbances)

* Not allowed to compensate for uncertainty model
parameters, 6, (kinetic and transport parameters)

* z, indexed by 6, but not by 6,

* Yy indexed by 6, and by 6,

>2(0,), y(9)
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Multiperiod Models for Both

min E,[P(d, z,y, ) s.th(d,z 1y, 6)=0,9(d, z, Yy, 8) =0]
st. Prylg(d,z,y,0)=0,deD,zeZ,yeY,0c0]20c

After discretization;

Min f,(d) + Zw.k fic (A Ze, Vi 6,41 B,)

S't'hk(d’Zk’yik’gv,k’ep,i) =0
gik(dizk1yik’gv,k’9p,i) =0
¢(d,y,2)<0

Control variables offer freedom to deal with variability
(e.q., reject disturbances) but not uncertainty




Uncertainty and Variability: Williams-Otto Process
(Rooney, B., 2003)

— Problem: Maximize ROI to produce product P
— Series reactions with rate constants uncertain

A+ B M (¢
C+B X2 pLE
PrC 2B ; -
Fa ——
Fs —‘*‘;// Fug F.. b >
V. T Z
Foraste FBO:__J FP“F

— Uncertain model parameters, ay,as and a3
— Varying process parameters: F4 = 10000(1 +4) and
Fg = 40000(1 % 9)



Willlams-Otto Results

45

— Treating uncertainty and variablity separately gives
intermediate and 'more realistic’ results

— Using elliptical confidence regions for 7 has a strong
influence on cost

Conf. Reg. ) Sl <
Nominal 0 41.1°F b
0.01 41.0¢ 30 +
Hypercube 0.05 39.4: '
0.07 | 37.8¢ 0 0.05 0.1
0.10 31.9:
0.01 | 41.0S_ | iiics | iaiaew
Ellipse 0.05 | 39.621 | 40.003 39.972
0.07 | 38.176 | 38.967 38.904
0.10 | 34.481 | 36.843 36.627




Interior Point Method

Min fo(d) + 3 @1,(d.2,.¥,.6) Min fo(p)+ 3 @ f;(p,x))
J

st.h;(d,z,,y;,6,)=0
9;(d,z;,y;.6;) *s; =0
¢(d,y,z2)+0=0, g,s, 20

st.c,;(p,x;) =0
c(p,x) =0, p,x; =0

. | |D
Min ,(p)+ 3 1, (px) ~4C Inx + 3 Inp'
] ¥ Js

st.c;(p,x;) =0
C(p,x)=0

fo— 00 [x(u'), p(u)] - [x*, p*]



IPOPT Algorithm

oLine Search Strategies

o - [, exact penalty merit function
o - augmented Lagrangion merit function
o - Filter method (adapted and extended from Fletcher and Leyffer)

oHessian Calculation
- BFGS (full/LM and reduced space)

o - SR1 (full/LM and reduced spoce)
o - Exact full Hessian (direct)

o - Exact reduced Hessian (direct)

o - Preconditioned CG

oFreely Available

e¢CPL License and COIN-OR distribution
¢ Solved on 1000s of test problems and applications
e Recently rewritten in C++

¢ Code avaliable at http:/Mmmww.coin-or.org
sAlgorithmic Properties

¢ Globally and superlinearly convergent (see Wochter, B., 2005)
o \Weaker assumptions than other codes
e Easily tailored fto different problem structures



Optimality Conditions: Interior point formulation

Define Lagrange Function: L(X, p): fo( p) + C(X, p)TA_ — VpT P

+5 [ fi(x, p)+c(x, p)" 4 -V X]

Take Stationary Conditions:
a)lljxi fi (Xl J p) T |:|xiC| (Xl ’ p)A| T |:|xi C(X’ p)A_ _Vi = O

0, fo(P) + > [, (%, p)+0,6 (%, PAT+0,T(x, p)A —v, =0
| XVe-pue=0
PV e-pe=0
c(x, p) =0
c(x,p)=0
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Decomposition Algorithm

1. H/VIOID - ZWiTVViWi éxup =r, - ZWTV\/iri
|:| I |

Key Steps
2. WAuU, =1, —wAu,

IPOPT
Line Search
& reduction of

A

Computational cost is linear in number of periods
Trivial to parallelize



Multiperiod Flowsheet 1

(13+2) variables and (31+4) constraints (1 period)
262 variables and 624 constraints (20 periods)

400
i
CAO To Vv
" i i 300
i | 1
F, T, F |
T™ CPU time (s)
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o\ - 100-
— 2 (A) |
<~ i _
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T, T

B SQP (T)
B MINOS(T)
° MPD/SQP(T)
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Multiperiod Example 2 — Heat Exchanger Network
(12+3) variables and (31+6) constraints (1 period)
243 variables and 626 constraints (20 periods)

50

40-
563 K
30

CPU time (s) I: ‘K‘ﬁﬁé? m
20- © MPD/SQP ()
393K
10

. , . , .
0 10 ] 20 30
350 K Periods

27



Hard Constraints

Need to enforce hard constraints over
entire domain, 0 € ©.

Sampling distribution to approximate E
and Pr operators Is not a guarantee.

Define T(d) < O to represent feasiblility over
0eO

What does this function look like?

How do we Incorporate this into the
algorithm?



“Two Stage” Algorithm

with Critical Point

[ Update Discretization

|

&

Mo

Discretize Uncertainty

Description
=)

Solve Multupernod

Optimization Problem

Check for Feasibility

Find Critical Point

-
e

» Solve multiperiod problem for 8, € © to yield a given design
» Attempt to ‘break’ the design with a feasibility test - locates a critical 6
» Add critical 8 to multiperiod problem and solve again



Feasibility Tests

Feasibility problem for parameter uncertainty (Conservative):

0600 0j{g,(d,z6)<0 O Max,, Max {g,(d,z6) <0}

Feasibility problem for variability (Optimistic):
0606 [zOZ 0j{g,(dz6) <0 O Max,, Min,,Max {g(d,z,6) <0}

Feasibility problem for variability and uncertainty (Realistic):
06,00, [z0Z 06,00, 0j{g,(dz6)< 0} O
Max, e, Min,, Maxepmep Max, { gj(d,z, 0) <0}

*Global solutions required for each operator (see Swaney and Grossmann (1985)
for properties and analysis

*Nested problems solved by writing optimality conditions at multiple levels — leads
to difficulties for NLPs (specific convexity properties required).

- KS function aggregation (Rooney and Biegler, 2003)

- Branch and Bound Search (Achenie and Ostrovsky, 2003)

- Global algorithms (lerapetritou, Floudas...)



L. Willlams-Otto Results: satisfies all feasibilit

{1411 [FERING

y tests

45

Conf. Reg. ) Sl <
Nominal 0 41.1°F b
0.01 41.0¢ 30 +
Hypercube 0.05 39.4: '
0.07 | 37.8¢ 0 0.05 0.1
0.10 31.9:
0.01 | 41.0S_ | iiics | iaiaew
Ellipse 0.05 | 39.621 | 40.003 39.972
0.07 | 38.176 | 38.967 38.904
0.10 | 34.481 | 36.843 36.627

— Treating uncertainty and variablity separately gives
intermediate and 'more realistic’ results

— Using elliptical confidence regions for 7 has a strong
influence on cost



Al Future Work: Source Detection in Municipal Water
ENGI! . .
Networks with Uncertainty

B 2
Treatment [‘T"—H L.

g . .| Consumers
& Storage ‘ .
« Large Area Encompassed ) e Vulnerable to

> ¢ Accidental & Intentional
 Many, Many Access Points « Contamination




O ptl m I Za'tl O n P ro b I %mConcentrations &

Injection Terms Only

. by . . 2 p [tf )
W = = t t) — cx(t S(t—ty) dt+= t)<dt
T ngo wi(®) (6(8) — ) 3(t—r) dit? [ i)

res
35@‘?;»” + ui(t)% _o, Only Constraints
Gi(a=Ty(t),t) = (1), (VieP, with Spatial
¢(z,1=0) = 0, Dependence
==

§j<%@)a®=oxw¢g+mﬁw

iel’k(t)

Vk € 7,

( 3 @-(t)) + QFH(E) + QI (t) _
ier(t) Pipe Boundary
Concentrations

i€l (t)

Qi(t) a(:ﬂ:oz-(t),t)) +mp(t)— [( 3 Qi(w) + QF*H(t) + QY (t)] & (1),
Vk € S,

c(t=0) = 0O,

< m(t) > 0, Vi ED Injection Terms Only




Origin Tracking Algorithm

origin node = A

timestep =1 — ~
1—1 , _— By @=Zi(t1),t1) = ca(t1)
= ' ® c(x=0;(t1),t1) = O

origin node = A

timestep =1

_ - 5 c(x=Zi(t5),t5) = ¢ca(ts)
=5 @ i ® c(x=0;(ts),ts) = ca(t1)

 Known Hydraulics — Function of Time
* Pipe Network PDEs Linear in Concentration
* Pipe by Pipe PDEs
— Efficient for Large Networks
— Convert PDEs to DAEs with variable time delays
« Removes Need to Discretize in Space
o Discretization in time leads to a large QP
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 Algorithm successful on over 1000 numerical tests with
real municipal water networks

e Solution time < 2 CPU minutes for ~ 250,000 variables,
~45,000 degrees of freedom

— Effective in a real time setting
 Formulation tool links to existing water network software

e Can impose unigue solutions through an extended MIQP
formulation (post-processing phase)




Source Detection with Uncertainty

Diurnal network hydraulics

Incorporate uncertain demands in diurnal hydraulics (somewhat simplistic)
Find injection location m,(t) as “design variable”

Formulate as multiperiod problem and apply algorithm

Exploit properties from IPOPT and BBD decomposition

Impose unique solutions through an extended MIQP formulation (same as
in single scenario, same effort)

Hard constraints (c,(t)=0) but m,(t)=0 => c,(t)=0
No feasibility problems needed
Other applications: robust sensor placement solved with larger MINLPs?




Conclusions

« Combined Variability and Uncertainty
— Overdesign for uncertainty, 8,
— Apply (feedforward) control for variability 6,

» Multiperiod Problem

— Scenarios for 8, and/or 6, considered simultaneously

— BBD structure exploited by IPOPT algorithm

— computational cost linear in scenarios (nearly perfect speedup if
parallelized)

» Modified two-stage formulation

— Control variables indexed only for variability in multiperiod problem

— More challenging feasiblity problems

— Yields intermediate results: less conservative and not overly optimistic

— Identification of 6, and 8, and corresponding distributions is still an open
guestion.



